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RI, RI, a+, a_-, e. We note that the generalized optimal structures obtained are not unique. 
Functions c (z) and ‘J1J t-d can be found which have no axial symmetry, but nevertheless 
produce the same maximum conductivity of the ring. It can also be shown that the problem 
discussed here has no non-generalized optimal structures. 
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ON AN INTEGRAL EQUATION FOR AXIALLY-SYMMETRIC PROBLEMS IN THE CASE 

OF AN ELASTIC BODY CONTAINING AN INCLUSION* 

B.I. SMETANIN 

An approximate solution of the singular integral equation (SIE) which 
arises in spatial problems in the theory of elasticity with mixed 
conditions of one-sided detachment of inclusions under axially-symmetric 
torsion is considered. The singularity is taken into account using the 
exact solution of the equation which determines the conditions of the 
analogous detachment in a two-dimensional problem in the case of a 
sheet. It is proved that, subject to certain geometric constraints, the 
solution of the initial problem can be obtained by the method of 
successive approximations. The problem of the axially-symmetric torsion 
of a layer using a rigid circular disc embedded in this layer and fixed 
to it by one of its surfaces is treated as an example. The possiblity 
of the practical realization of this problem lies in the fact that a 
torsional moment which is applied to a rod which has been welded 
perpendicular to the centre of a disc can be transmitted through the 
disc to a layer and pierce a part of the layer. 

The solution of one type of singular integral equation /l/ which arises in problems on 
inclusions in elastic bodies which have become detached has an integrable singularity at the 
ends of the integration interval. In applications such as axially-symmetric problems on 
detached inclusions in elastic bodies /2, 3/ the need arises to construct the solution of 
the above-mentioned integral equation which is bounded at one of the ends of the integration 
interval. This solution is constructed below by the method of "large h" /4/. 

1. Let us consider a singular integral equation in the function Q(S) 

(1.1) 



372 

k(t) = S [h,(~)sinut + A,(u)cosnt]du 
0 

The functions A,(Z) (s = 1, 2) are meromorphic in the plane 
u + iv and real when v=o. They have no poles on the real 
satisfy the condition 

h, (U) = 0 (e-x@') (x, > 0; n = 1, 2) 

(W 

of the complex variable Z= 
axis and, when 1 u I+ co, they 

(1.3) 

The properties of the functions A,'(u) enable one to conclude that a function k (w), 
as a function of the complex variable w = t f ir, is regular in the strip ttl<oo,t~1<&= 
min (x1, x2) and, when It I<X*r it can be represented by the absolutely converging series 

/l/ m 

k (t) = 3 b,,t” 
n=0 

(1.4) 

b,, = +$~ha(~)~““du 

0 
“: 

b,,,,, = x \ 
(Zn + I)1 ; 

A, (u) u*“+l du (n = 0, 1,. . .) 

It follows from the conditions max 1 t 1 = 2/h and 1 t /<SC, that the solution of the 
integral Eq.(l.l) found using the representation (1.4) can at least be used when h>h, = 2/x,. 

For the purpose of obtaining the solution of the singular integral Eq.(l.l) which is 
bounded when s=---1, let us consider the SIE 

nq (5) + s ;‘“4” ___ =Ttw (l~l<l) (1.5) 
-1 

It has the solution /5/ 

q(z)= Q 
n Jr? x (I) 

+~~x~)-~~l(~) 

Q=&m% l X(5)X(5)dS I @) = s x (z)(E- 2) 

x (5) = (1 + 32)“” (Y- -z)‘/. 

When the condition 

(1.6) 

is satisfied, a solution of (1.5) can be found 

For this purpose, it is necessary to transform 
ing manner: 

Y(x) =(S), (1.7) 

from (1.6) which is bounded when x=-l. 

the integral occurring in (1.6) in the follow- 

--1 

+#dE 
-1 

As a result of this, we have 

(1.8) 

On putting 

in (1.7) and (1.8), we get 
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(1.9) 

(1.10) 

Theorem 1. If 

f (z) E H,” (-1, I), s > 0, V, < a < 1 (1.11) 

and a solution of the SIE (1.1) exists in LP(-l,l),p >I and condition (1.10) is satisfied, 
then the solution of this equation has the form /l/ 

Q (I) = Y (s)Y (5), y (x) EC, (-1, 1) (1.12) 

for all AE(O,00). 

Lerruna 1. When conditions (1.10) and (1.11) are satisfied, any solution of the SIE from 
the class &(-l,l), p>l is also a solution of the SIE (1.9) and vice versa. 

The proof of Lemma 1 is analogous to the proof of Lemma 2 in /l/. 
Let us transform Eq.(1.9) to a singular integral equation in the function Y(z): 

Y = Y’, + A (up) (1.13) 

Lermna 2. The operator A which is defined by the second formula 
space C (--1,l). 

The proof of this lemma is analogous to the proof of Lemma 25.2 
necessary to transform the function F (S, 5) I using the value of the 
the form 

Theorem 2. Let the function f(.z)ES (-1, I), 'I.( a< 1 and the inequality 

hold. 

h > A, = =J, (Do + V-D,’ + 40,) 

D, = max 1 kc”) @)I, t E IO, me] 

In this case a solution of the SIE (1.13) in the class 

(1.14) 

of (1.14) acts in the 

in /4/. Here, it is 
integral (1.21) /l/, to 

(1.15) 

C(-1.1) exists, it is unique 
and it can be found by the method of successive approximations. 

For the proof of the theorem we obtain the estimate 

which enables one to determine 

(1.16) 

It follows from (1.16) that, when condition (1.15) is satisfied, the operator A will be 
a compressive operator in C(-1,l). 

It is convenient to determine the function y (x) in the form of the series 
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(1.17) 

In order to find the functions yrl lx), it is necessary to introduce the expansions 
(1.17) and (1.4) into (1.13) and subsequently to equate the expressions accompanying the 

same powers of h on the left-hand and right-hand sides of the resulting equality. As a 

result, we shall have 

Y,(x)=-@ ( Y,(E)Y(E)dE 
--L 

Y,(x) =* f Yo(E)Y (a(x-5-+-v* 5 ‘I*, (5) y (E) dE 
-1 -1 

and so on. The function Yu,(z) is given by the first formula of (1.14). As a 

determination of the functions Y,, (I) (n = O,l, . ..,N), the approximate solution 
SIE (1.1) will be given by the formula 

Q (5) = Y (5) 4 Y,(z) A-* + 0 (A-N-‘) 

Relationship (1.19) can be used when h,<h< co, where h,=max (A,,&,). 

(1.18) 

result of the 
of the initial 

(1.19) 

2. As an example, let us consider the axially-symmetric problem of the equilibrium of an 
elastic layer of thickness 2h in the median plane of which a thin rigid disc of radius a is 

located. The upper face of the small disc, when z = +o, 0 d r < a (r, 'p, I are cylindrical 
coordinates) is bonded to the elastic medium while the lower face when z=-0,O dr<a is 

separated. The upper surface of the layer when z=h,O<r<w is load-free while the lower 

surface whenn= --h, OCr<m is bonded to a rigid base. A torsional moment M is applied to the 
disc Iwhich causes the disc to rotate about the z-axis by an angle SL. 

This problem reduces to solving the Lame equation for the components of the displacement 

vector uV subject to the following boundary conditions: 

0 <r< a,lr,$ = -0.r (I = +o) (2.1) 

&@a =- CJ (z = -0) 

04r<m, &@z = 0 (z = h) 

*ly 
= 0 (z = -h) 

The problem with the boundary conditions (2.1) is reduced by the method of integral 
transforms to the solution of the SIE (1.1). Here, 

Here, C is 
the disc is in 
by the formula 

(p is the shear modulus). It can be shown that the structure of the solution of the SIE (1.1) 
which is determined by formula (1.12), ensures an integrable singularity in the case of the 

function %Vz in the form of (2.2) : ~,,osO ((a - r)f”) when r-n - 0. 
A discontinuity in the displacements of the points of the cut of the elastic medium on 

passing from one edge of the cut to the other is also associated with the function n(z) : 

a constant which has to be determined. The stresses T* in the domain where 
contact with the elastic medium are expressed in terms of the function Q (2) 

f (2) = 4aa(z i_ c), A,(U) = sch 2~ 

AZ(u) = th 2~ - 1, A. = h/a 

(2.3) 

It follows from (2.3) that the integral characteristic of the solution & must be equated 
to zero. The constant C is determined from condition (1.10). The link between the parameters 
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M and a can be obtained from the formula 

M = 2~3 r+TQl (r.+ 0)dr =4@ i Sq (E) de 

0 --I 

(2.4) 

(relationship (2.2) has been taken into account in deriving the latter equality). 
In the case of the problem under consideration x1= 2, %a = 4, X* = 2, a, = 1, D, = 0.347, D, = 6.460, 

)1z == 0.437, h, = 1, b, = --‘isIn 2, bl= 'IrG (C is the Catalan constant) : 

bt,= qg+$+z”+‘) 

b 
(-1)" m (-1)"+' _- an+1 - 2zn+1 z (*m_-)'"+% (n = I. 2,. . .) 

rn=l 

and t(n) is the Riemann zeta-function. 
By carrying out calculations using formulae (1.14) and (1.18) for the case under con- 

sideration and eliminating the constant C, we get 

4(1)=2~.~(2)[~-~+~~~(~-~)h-S-~bb,(~2-~~-~)b~+ 

&b, 4z3 - f za+ $ 
( 

z- +)W+o(k*)] 

b,= 0.02817, b, = -0.1236, b,= -0.001899 

(3.5) 

By introducing a (=) in the form of (2.5) into (2.41, we find the relationship between 
the moment M and the angle of rotation of the disc a: 

REFERENCES 

1. SMETANIN B.I., On an integral equation and its application to problems of thin detached 
inclusions in elastic media, Prikl. Matem. i Mekhan., 49, 5, 1985. 

2. POPOV G.YA., The Concentration of Elastic Stresses by Stamps, Cuts, Thin Inclusions and 
Reinforcements, Nauka, Moscow, 1982. 

3. SMETANIN B.I. and SOBOL B.V., A delaminating inclusion in an elastic half space, Izv. 
Akad. Nauk SSSR, Mekh., Tverd. Tel, 6, 1985. 

4. VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V.A., Non-Classical Mixed Problems in Elasticity 
Theory, Nauka, Moscow, 1974. 

5. GAKHOV F.D., Boundary Value Problems, Nauka, Moscow, 1977. 

Translated by E.L.S. 


